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ABSTRACT 

A support vector machine (SVM) is combined with a non-homogeneous hidden Markov 

model (NHMM) to downscale daily station rainfall sequences over Israel from global 

atmospheric reanalysis data. The selected atmospheric fields can be extracted from 

general circulation models, making the SVM-NHMM approach potentially useful for 

downscaling climate predictions.  For the October–March wet season, seasonally 

averaged rainfall variability was captured with an anomaly correlation skill of 0.89 over 

the period 1980 to 2000, using a model trained on a previous period. The frequency of 7-

day dry spells and the length of the longest dry spell per season were reproduced 

correlations of 0.82 and 0.71, respectively. The SVM-NHMM approach is shown to 

outperform the PCA-NHMM approach used in previous studies, in which principal 

component analysis (PCA) is used for linear dimension reduction of the atmospheric 

predictors in place of the SVM. The NHMM hidden states generated are seen to 

correspond to synoptic systems prevalent in the region including the Cyprus low, a low 

pressure system centered over Cyprus and Turkey.  
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1. INTRODUCTION 

Effectively simulating daily precipitation variability is important for different scales of 

water resource management and planning including crop choice and investment, aquifer 

management and water infrastructure investment.  For rain-fed agriculture, the economic 

viability of the crops is critically affected by the farmer’s ability to cope with within-

season and longer-term climate variability..   

It is increasingly realized that both global and local information is necessary to 

adequately simulate and predict rainfall variability at a given location over various time 

scales.  Over the past 10 years, General Circulations Models (GCMs) and Regional 

Circulation Models (RCMs) have become increasingly effective and efficient at seasonal 

prediction of sea surface temperatures (SSTs), wind patterns, and near-surface air 

temperature and precipitation (Goddard et al., 2001; Sun et al., 2005).  However, as the 

spatial resolution of GCMs is in the hundreds of kilometers, the predicted rainfall is not 

directly comparable to rain gauge data that are typically used by hydrologic and crop 

models; RCMs embedded over a subdomain of a GCM use GCM output as boundary 

conditions. They can be expensive and cumbersome to run as part of a  multi-model 

ensemble prediction system and may still lead to significant biases in local daily rainfall 

statistics, that arise due to either flawed boundary conditions passed on by the GCM, or to 

flaws in the parameterization of physical hydrologic processes.   In short, even for the 

GCM-RCM approach for climate model downscaling, the final rainfall output requires 

statistical processing to be useful.  
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Statistical models such as Markov processes and neural networks using only local data 

for rainfall simulation have been in use for some time. Weather generators using Markov 

chains have been used for decades to simulate stochastic local daily rainfall sequences 

based on the statistical characteristics of observed rainfall at that location (Gabriel and 

Neumann, 1962; Mason, 2004; Richardson, 1981).  By integrating information from the 

GCMs and RCMs with appropriate local statistical models it is, in principle, possible to 

improve the skill and specificity of their simulations and to generate potentially useful 

seasonal climate forecasts. Hidden Markov Models (HMM) have proven useful for 

capturing hidden states (‘wet’ or ‘dry’) and reproducing daily weather patterns and 

rainfall statistics such as the length of dry and wet spells that are important for crop 

choice and agricultural decisions (Greene et al., 2008). The addition of exogenous climate 

factors (Non-Homogeneous Hidden Markov Models (NHMM)) obtained from GCMs has 

improved the skill of the local stochastic models by including inter-annual variability 

important for multi-year aquifer planning and decadal water planning.  (Bellone et al., 

2004; Hughes and Guttorp, 1994; Hughes et al., 1999; Robertson et al., 2007; Robertson 

et al., 2004).  In these models, the choice of climate factors (or predictors) is critical for 

reproducing within season and interannual rainfall variability. The challenge is that the 

GCM forecast fields are high dimensional with numerous potential predictors, many of 

whom are highly correlated.  The best way to combine or select from these predictors in 

the NHMM is unclear. Previous studies have used meteorological indices derived from 

the GCM fields, such as mean sea level pressure and gradients of geopotential height 

across the region of interest (Hughes et al., 1999), as well as the GCM’s regional 

precipitation field whose dimension is first reduced by principal component analysis 
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(PCA) (Robertson et al., 2004).  Here, we present the use of a Support Vector Machine as 

a nonlinear alternative to PCA to generate a single input variable for the NHMM using 

multivariate reanalysis climate data.  

2. STUDY AREA AND DATA  

We apply the SVM-NHMM approach we develop to the eastern part of the Jordan River 

Valley. For Israelis and Palestinians, population density and per capita water usage has 

increased dramatically over the last century, and water availability and allocation is a 

source of tension.  Eighty five percent of the water supply is rain-dependent with high 

intra-annual, inter-annual and decadal variability which in the past have been responsible 

for multi-year droughts. Palestinian agriculture is predominantly rain-fed, while in Israel 

it is largely irrigated using lake and ground water. Given its ability to store water in the 

aquifers, Israelis are more impacted by multi-year drought.  Palestinians, however, are 

impacted by both intra-annual, or seasonal, as well as inter-annual variability. The impact 

of this variability on agricultural production, groundwater recharge, groundwater salinity, 

and lake level decline is of concern.  

This region is located at a node between the influence of eastern Mediterranean and 

Middle Eastern climate regimes.  Winter rainfall dominates and comes from the west 

with moisture advected from the Mediterranean. Mediterranean winter cyclones and 

mean-sea-level pressure (MSLP) variations have been shown to have monthly to yearly 

impacts on rainfall in Israel (Kutiel and Paz, 1998).  Anomalously dry conditions in the 

region were found to be accompanied by positive MSLP anomalies in the eastern 

Mediterranean, and vice versa.  Rainfall is thus highly influenced by the behavior of 
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Mediterranean storms, which have been found to explain up to 70% of the variance of 

rainfall in the region over the past 4 decades.  (Trigo et al., 2000). (Alpert et al., 2004b) 

identify four main types of synoptic system in the Eastern Mediterranean (EM), each one 

dominant at a different time of year and bringing distinct weather patterns to the EM and 

surrounding region. The four main systems defined by Alpert et al (2004) include: (1) 

The Sharav lows, which come from the south-west primarily in the spring, bringing with 

them hot and dusty air from the Sahara or Arabian deserts; (2) Persian Troughs, which 

dominate in the summer, originating from the east and persisting along with the Asian 

Monsoon season. They cause relatively warm and humid air over the coastal EM region; 

(3) The Red Sea Troughs, prevalent in autumn/winter, originating from the south, they 

are associated with dry desert air. They are often pushed back by stronger winter systems, 

specifically Cyprus Lows; and (4) Mediterranean winter lows which come from the west 

bringing most of the rainfall over the continental part of the EM region. They are called 

Cyprus Lows when situated close to Cyprus. These lows often propagate from west to 

east over the Mediterranean, providing energy and moisture for cyclone development and 

causing Mediterranean storms along the way. These Mediterranean storms, or cyclones, 

often produce extreme weather events, with heavy rainfall.  

2.1 Precipitation Data 

Daily precipitation data from thirteen stations provided by the Israeli Meteorological 

Service were used. Figure 1 shows the locations of the selected stations. The period 

1950–2000 was chosen because it has a complete record at all 13 stations, and   for which 

atmospheric reanalysis data is available. A list of the station names, locations, and source 

of the rainfall time series is given in Table 1. 
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Figure 2 shows box plots of the annual monthly average at the 13 stations. Most of the 

rainfall in the region occurs in the winter season between the months of October and 

April.  Spatially, there is a sharp north-south precipitation gradient with the upper part of 

the Galilee and the Golan Heights receiving up to 1200 mm annually with around 600 

mm annual average, while the Southern desert part receives about 50 mm annually.    

2.2 Climate Data 

Daily climate data over the Eastern Mediterranean (EM) region was selected from the 25 

grid-boxes within the region (30 °E–40 °E, 27.5 °N–37.5 °N), with a resolution of 2.5° 

(Figure 3), obtained from the NCEP–NCAR Reanalysis Project (Kalnay et al. 1996; 

http://www.cdc.noaa.gov/cdc/reanalysis/ reanalysis.shtml). This domain captures the 

region of the Cyprus Lows and the Mediterranean storm track responsible for most of the 

rain in the region.  For each gridbox, geopotential height, u-wind, and v-wind at 1000hPa 

were extracted as climate “predictors” of Jordon-valley rainfall (75 variables total).  

These variables have been used in other studies to automatically classify EM synoptic 

systems (Alpert et al., 2004b) as well as to determine the prevalence and evolution of 

different synoptic systems over the year and how they correlate to the different seasons –

fall, winter, summer and spring (Alpert et al., 2004a).  Here, we use reanalysis data to 

demonstrate the potential of the modeling approach.  These same predictor fields can be 

extracted from GCMs making this approach potentially useful for future GCM 

downscaling studies. 

Page 7 of 42

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

 8 

3. METHOD 

Figure 4 shows a flowchart of the methodology. There are three distinct parts. First, a 

hidden Markov model (HMM) without an exogenous predictor is run to determine the 

number of hidden states that are synoptically meaningful for the rainfall data set. The 

Viterbi sequence, which estimates the most likely sequence of hidden states that underlie 

the observed rainfall evolution is then identified. Next, two alternatives for dimension 

reduction of the reanalysis data are compared, namely principal components analysis 

(PCA) and the SVM. The PCA is applied directly to the atmospheric fields, while the 

SVM is applied to relate the atmospheric fields to the Viterbi sequence, in a manner 

analogous to a regression, or to Canonical Correlation Analysis. The SVM uses the 

reanalysis fields as inputs and the Viterbi sequence from the HMM as classifiers. A non-

homogeneous HMM (NHMM) is then run using the predictors obtained from the two 

methods of dimension reduction, in order to predict the hidden state transition 

probabilities. The remainder of this section describes the SVM, HMM and NHMM 

components. The PCA is standard methodology, and was applied to the covariance 

matrix of the 75-variable GCM daily predictor field. For both the PCA and SVM, the 

GCM data was standardized at the outset by subtracting the long-term mean of each 

variable, and dividing by its long-term daily standard deviation.  

 3.1 Hidden Markov Models 

A Hidden Markov Model considers a Markovian process to generate simulations of a 

given time series based on random sampling of the probability distribution functions 

(pdf’s) conditioned on different hidden states, S,  which are typically persistent synoptic 
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weather regimes in our context.  Figure 5 shows how the hidden weather states, S, are 

used to determine the output vectors of daily precipitation occurrences R. The model used 

is fully described in Robertson et al. (2004, 2007). In brief, the time sequence of daily 

rainfall measurements on a network of stations is assumed to be generated by a first-order 

Markov chain of a few discrete hidden (i.e. unobserved) rainfall states. For each state, the 

daily rainfall amount at each station is modeled as a finite mixture of components, 

consisting of a delta function at zero amount to model dry days, and a combination of two 

exponentials to describe rainfall amounts on days with non-zero rainfall. A maximum 

likelihood approach is used to estimate these rainfall “emission” parameters, as well as 

the transition matrix between states.  Once these parameters have been estimated, the 

most-likely temporal sequence of states can be estimated given the rainfall data, by 

means of the Viterbi algorithm (Forney., 1973) this sequence is then used in conjunction 

with the reanalysis data to train an SVM.  

The HMM is capable of generating variability directly based on the Markovian dynamics 

of the hidden variable S.  However, it is necessary to incorporate exogenous variables in 

order to simulate inter-annual variability influenced by climate phenomena. In the 

NHMM, the state-transition matrix is treated as a (logistic) function of a multivariate 

predictor input time series (Figure 6), as described in Hughes and Guttorp (1994) and 

Robertson et al. (2004).  

3.2     Support Vector Machine  

The Support Vector Machine (SVM) is employed to generate a univariate daily time 

series from the 75-component reanalysis data. The SVM is a learning machine for 
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classification problems and provides a way to classify multi-dimensional data based on 

the similarity of certain “attributes”, learning by example to assign class-labels to objects 

so as to minimize both the prediction error and model complexity simultaneously (Noble, 

2006). (Mukherjee and Mukherjee, 2002) showed that the SVM algorithm has a 

remarkable prediction capacity and it performed better than polynomial and rational 

approximations, local polynomial techniques, radial basis functions, and feed-forward 

artificial neural networks (ANNs) when applied on a database of chaotic time series. 

Unlike ANNs, the structure of the SVM model is not fixed in advance with a specific 

number of adjustable parameters, but can adapt to the data. Introduced by (Vapnik, 1995), 

the basic idea behind SVMs is to map the high-dimensional input space into a low 

dimensional feature space utilizing kernels. This so-called “kernel-trick” enables the 

SVM to work with feature spaces having very high dimensions. This makes it possible to 

perform the separation between different classes or groups even if they have very 

complex boundaries (See Figure 7)  

Consider an example of binary classification (e.g., the Viterbi sequence for a two state 

HMM).  One would like there to exist a w  and b  such that an observation ix  has “a 

positive class” if  1>=−⋅ bxw i  and “negative class” if 1−≤−⋅ bxw i . In order to find 

the plane that is furthest from both sets one has to maximize the margins between the 

support planes. The supporting graphs are maximally separated and supported by what 

are called support vectors. The margin between the two supporting planes is 

||||2 2w=γ , thus maximizing the margin is equivalent to: 
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Typically, the optimal parameters of Equation (1) are found by solving its dual 

formulation. After introducing a dual set of variables to construct a Lagrange function, 

and applying Karush-Kuhn-Tucker conditions, Vapnik (1995) has shown that Equation 

(1) is equivalent to the following in the dual form: 
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where the Lagrange multipliers iα and jα  are required to be greater than or equal to zero 

for i = 1, …, M. Equation (2) comprises a convex constrained quadratic programming 

problem (Cortes and Vapnik, 1995; Vapnik, 1995). As a result, the m-input vectors that 

correspond to nonzero Lagrangian multipliers, iα and jα , correspond to the support 

vectors. The SVM model thus formulated, then, is guaranteed to have a global and unique 

solution. 

Despite the mathematical simplicity and elegance of SVM training, it is able to identify 

relationships of high complexity (Liong and Sivapragasam, 2002; Scholkopf et al., 1997). 

The mapping of the data from the nonlinearly separable space to the linear space is 

carried out using feature functions )(⋅Φ ; these functions attempt to perform mapping that 

is necessary for applying the linear algebra in the SVM formulation. The mapping to the 

feature space is carried out implicitly providing that the dot product of these mapping 

Page 11 of 42

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

 12 

functions is equivalent to a well defined kernel functions that follow Mercer conditions 

(Vapnik, 1995). That is from Equation (2) the nonlinearity and the mapping to a space 

where linear algebra applies (i.e., the kernel trick) is computed as:  

),()()()()( jijiji K xxxxxx →Φ⋅Φ→⋅ . The extension of SVM to multi-class 

classification is carried out by solving many binary classification SVMs and performing 

voting schemes afterward. Interested readers are referred to (Angulo and Catala, 2000; 

Angulo et al., 2003). Application of SVM in water resources management and chaotic 

time series analysis have been highlighted in (Khalil et al., 2005a; Khalil et al., 2005b; 

Khalil et al., 2006).  Here, the Viterbi sequence from the HMM is what is classified, and 

the vector x corresponds to the atmospheric circulation variables considered as the 

predictors for the NHMM.  

 

4. RESULTS AND ANALYSIS 

4.1       HMM Results 

The HMM was first implemented without climate predictors to determine whether the 

model could identify physically meaningful hidden states and capture persistence and 

trends. Based on log-likelihood, AIC and BIC scores, as well as an examination of the 

synoptic circulation patterns identified for the different states, the number of hidden states 

was set equal to four. The state transition probability matrix is presented in Table 2, and 

the Viterbi state-sequence plotted in Figure 8, with the states ordered from the driest to 

the wettest; overall rainfall attributes of each state are also given in Table 2.  As can be 

seen in both the figure and the table the dry state (state ‘1’) and the wettest state (state 
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‘4’) are most persistent, with few direct transitions between them, with the mildly wet 

states 2 and 3 as transient intermediaries.   

The meteorological characteristics associated with each state are shown in Figures 9 and 

10, by making composites of reanalysis data for the days classified into each state by the 

Viterbi sequence. Figure 9 shows composites of sea level pressure anomalies (deviation 

from the long term monthly mean). Figure 10 shows composites of total wind at 850mb. 

State 1 (the dominant state – 62% of the days) corresponds to dry conditions, with very 

weak rainfall intensities and very few rainfall occurrences.  Winds from the west are very 

weak and an anomalous ridge overlays the region. 

State 4 the ‘wettest’ state, is typical of a deep Cyprus or winter low, with a low pressure 

system just to the west of Cyprus, and strong moist westerly winds from the 

Mediterranean. Rainfall intensities are large, and 72% of the total rainfall occurs in this 

state.   

States 2 and 3 can be described as transitions states. States 3 is similar to state 4 for the 

northern stations, with similar probability but lower intensity. Figure 9c shows a similarly 

structured but weaker MSLP anomaly.  However, the main differences between states 3 

and 4 are evident in the central and southern stations which have a much lower 

probability of rainfall in state 3 (41-48 % depending on the station) than in state 4 (71-

99% depending on the station).  While state 2 has both lower frequency and intensity 

rainfall than both states 3 and 4, the probability of rainfall in the central and south is 

similar to that in the north (25-53% for all stations).  Figure 9b shows that for these days, 

a shallow Eastern Low is dominant, bringing low intensity rainfall to the entire country. 
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4.2   SVM and PCA Results  

The SVM is next used in conjunction with the Viterbi sequence to generate a single 

climate predictor from the 75-component reanalysis data, thus using the HMM as the 

classifier, essentially mapping each day into a specific hidden state.  Forty nine winter 

seasons (October–March, 182 days) between the years 1950 and 1999 were used (8918 

days total). A subset of the training years was chosen as the computational costs of the 

model prohibited the use of the entire data set. The training set consisted of 4 years, or 

728 days of data. Increasing the size of the training set to 8 years did not improve the 

results. The dates chosen for the training set included 4 seasons: 1956/1957, 1962/1963, 

1968/1969, and 1969/1970.  1962/1963 was a drought year, 1956/1957 and 1969/1970 

were average years with respect to rainfall amounts and 1968/1969 was a wet year. These 

seasons were selected to encompass the largest possible range of rainfall conditions.  In 

the SVM, a radial basis function kernel was used (Hsu and Lin, 2002).  Once the model 

was trained, it was tested on the entire 8918 day data set.    

Table 3(a) presents a confusion matrix of the actual Viterbi sequence with the sequence 

predicted by the SVM, showing the number of times the predicted state (rows) matched 

the observed one (columns). Table 3(b) shows the percentage of days correctly and 

incorrectly classified for each state. The diagonal shows the days where the predicted 

class number matched the real class number. The other squares indicate how the model 

got ‘confused’, predicting class y when the actual class number was x.  For example, 

there are 4386 days which were classed correctly as ‘1’ in the predicted set (the dominant 

dry state).  In the square below, there were 552 days that were classed as ‘2’, but were 
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actually class ‘1’.  Even though the SVM misclassified about 35% of the days, it was still 

able to capture the within season and interannual rainfall variability.  

4.3  A Comparison of NHMM Results using SVM and PCA 

The NHMM was trained using the observed rainfall data, together with the SVM-

predicted Viterbi sequence (Sect 4.2), both for the 29-year training period 1950–1979. 

The Viterbi sequence of 4 integer values was transformed into 4 binary timeseries, each 

representing a single state; these 4 binary predictors were then used as input to the 

NHMM without normalization. The combined SVM-NHMM was then validated using 

the independent 20-year period 1980–1999, using the reanalysis data as inputs, and 

verifying against the daily rainfall data. We compared the results generated when using 

the results from the SVM as the conditioning climate input to the results generated when 

using the leading 3 principal components (PCs) as input predictors.  In this case, the 

PCA-NHMM was trained on the same 1950–1979 period using the PCs defined on that 

period as a 3-component input vector. For the 1980–1999 validation period, the 

reanalysis data was projected onto the PC loading vectors (ie the empirical orthogonal 

functions, EOFs) derived from the training period in order to derive the PCs as input to 

the NHMM during the validation period. 

We ran 50 simulations for the test years and extracted seasonal rainfall statistics including 

the seasonal average and the number of wet and dry days, which are important for aquifer 

management, as well as the number of 7-day dry spells and the length of the maximum 

dry spell, which are important for agriculture management (crop choice and crop 

investment). The rainfall threshold here was defined at a day with more than 0.02 mm 
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recorded rainfall. Figure 11 shows the averages (over the 13 stations and 50 simulations) 

of selected statistics along with the 50% and 95% confidence limits compared to the 

observed historical data for the PCA (panels a–c) vs SVM (panels d–f) models. The 

model using the SVM generated climate predictor performed better for all statistics 

analyzed. These include the average annual rainfall amount, 3-day consecutive rain 

events, 7-day consecutive dry spells, persistence statistics including wet-to-wet day and 

dry-to-dry day probabilities and the total number of wet days and dry days per season 

(Table 4). The SVM-NHMM model had higher correlations and lower mean squared 

errors and hence proved more skillful than the PC-NHMM model.    

Predicted vs. observed rainfall at selected stations for the SVM-NHMM model is shown 

in Figures 12 and 13 for seasonal precipitation amounts and the number of 7-day dry 

spells respectively. For seasonal averages, all of the stations are captured well by the 

model, with the exception of Eilat.  This is perhaps because the precipitation reaching 

Eilat is often associated with a Red Sea Trough, a system originating to the south in the 

Arabian peninsula which is often dry and not captured by the 4-state HMM . Precipitation 

to the other stations is dominated by the Cyprus Lows, the synoptic system captured in 

the climate data used to create the input vector. The stations in the south, in the more arid 

region, exhibit somewhat lower anomaly correlation scores than those in the wetter, 

northern region. This could perhaps be explained by the large variability and low total 

rainfall amount in those arid stations as well as by the fact that most of the variability 

(and rainfall) in the south is brought in by the Red Sea Trough. Alternatively, it could be 

due to pooling of all the results without scaling the data. Additional analysis of the 2 

regions separately is currently in progress. 
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5. CONCLUSION 

Statistical downscaling of precipitation from atmospheric GCMs involves choices of 

predictors, basis functions, and parameters as well as model form. The NHMM based 

strategies are somewhat more complex than simple regression models. However, they 

have been shown to be effective in past applications and are perhaps the most effective 

way to map the seasonal gridded forecasts to station daily precipitation scenarios for a 

season. One of the limitations in this technology has been the ability to effectively model 

potentially nonlinear relationships between the atmospheric circulation patterns and the 

parameters of a daily weather generator. Parsimony is an important goal in this regard as 

well. The experiment conducted in this paper establishes that the SVM-NHMM based 

approach can offer improved out-of-sample performance in terms of some key daily 

statistics of seasonal and inter-annual rainfall variability.  

While reanalysis data was used in this study, fields of the same type are generated by 

GCMs and could be extracted for downscaling of seasonal climate forecasts, or as part of 

an evaluation of future climate scenarios. Some ad hoc choices for some of the model 

structure were made, including the number of training years for the SVM and the number 

of PCs used, but an effort was made to keep the design as consistent as possible across 

the PCA and SVM based designs.  

The SVM classification used to develop the SVM-NHMM scheme is effectively a 

nonlinear encoding of the atmospheric circulation fields whereby a high-dimensional 

(here 75) vector describing the large-scale circulation field is assigned a state label (here 
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derived from the station rainfall via the HMM). The resulting SVM-NHMM simulations 

exhibit stronger correlations with rainfall for stations in the northern region. This is 

probably partly because climatological rainfall is greater in the north and thus tends to 

play a larger role in determining the HMM states. Dynamical control of rainfall by 

circulation is also stronger in the north, associated with Cyprus Lows, while the Red Sea 

Trough that plays a role in rainfall in the south is more subtle and often accompanied by 

dry conditions (Tsvieli and Zangvil, 2005).  Further analysis could potentially improve 

these results, perhaps by treating northern and southern stations separately, or by 

expanding the climate domain used as a predictor set.  However the SVM-NHMM is still 

superior in performance to that of the corresponding PCA-NHMM using 3 PCs (that 

accounted for 63% of the variance of the predictor field). Thus, applications of the SVM-

NHMM may be useful to explore as alternatives to the PCA-NHMM. As presented and 

applied here, the SVM-NHMM is essentially just as automatic a procedure as the PCA-

NHMM, and cross-validated performance measures as deployed here can be used to 

choose between these two alternatives as well as different choices of the structure or 

classes for the classification variable.  Additional experimentation with the method to 

assess its comparative performance is needed.  
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7. LIST OF FIGURES AND TABLES 

Figure 1: Map of 13 selected stations. Map generated using the KNMI Climate Explorer 

website. 

Figure 2: Boxplot of average monthly rainfall for all stations 1950-1999. 

Figure 3:  The 25 grid points from which reanalysis 1000hPa geopotential height, u-wind, 

and v-wind are taken for climate predictors. 

Figure 4:  Flow Chart for model methodology. 

Figure 5: Conceptual representation of the kernel transformation to a higher dimensional 

feature space.  A non-separable one-dimensional data set (left) multiplied by itself and 

transformed to a 2-dimensional space, where it is separable (right). Adapted from (Noble, 

2006). 

 

Figure  6:  Graphical Model Representation of a Hidden Markov Model (Robertson et al., 

2004).  

 

Figure  7:  Graphical Model Representation of a Non-Homogeneous HMM (Robertson et 

al., 2004). 

 

Figure 8: Estimated HMM state sequence of the historical rainfall data set from 1950-

1999. State 1 is represented with white bars, state 2 with light grey bars, state 3 with dark 

grey bars and state 4 with black bars.  

Figure 9: Geopotential Height anomaly composites for the four HMM states at 1000mb. 

For each day in the composite, anomalies are calculated as difference from the long term 

monthly mean. 

Figure 10: Total wind composites for the four HMM states at 1000mb. 

Figure  11:  Results from 50 NHMM simulations over the period withheld from model 

fitting, using PCA (a-c) and SVM (d-f) generated climate predictors: Precipitation 

amounts, number of 7-day dry spells, and number of dry days per season averaged across 

all 13 stations. Solid lines are observed data and dotted lines are simulation averages. 

50% and 95% confidence limits are shown. 

Figure 12:  Interannual variability of SVM-NHMM-simulated rainfall amount for 

selected stations (northern stations in the top row, central stations in the middle row and 

southern stations in the bottom row). The average of the 50 simulations is plotted for each 

year (dashed) together with the observed (solid). The precipitation (in mm) per season is 

plotted on the ordinate. The results are only shown for years that were withheld from 

model fitting. 
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Figure 13:  Number of 7-day dry spells per season of SVM-NHMM-simulated rainfall 

amount for selected stations. (northern stations in the top row, central stations in the 

middle row and southern stations in the bottom row)The average of the 50 simulations is 

plotted for each year (dashed) together with the observed (solid). The number of dry 

spells (in days) per season is plotted on the ordinate. 

Table 1:  Station ID, name, source, longitude and latitude of selected stations 

Table 2: The first four columns show the transition probabilities from each hidden state 

to hidden state for the four state HMM. The right-hand columns show the range of daily 

station average rainfall amount. For each state and the % of total rainfall that occurs 

during each state during the historical period 1950-1999.  

Table 3: Confusion Matrix for the SVM, giving (a) the number and (b) the percentage of 

days that are classified correctly and incorrectly into each rainfall state for the 1950-1999 

period. The observed states from the Viterbi sequence are in the columns and the 

predicted states from the SVM are in the rows. Correct classifications for each state can 

be seen along the diagonal. 

Table 4: Comparison of Correlations and Mean Square Error (MSE) between SVM and 

PCA model with real data for specific rainfall statistics. Wet and Dry Spell Counts are the 

annual number of 3-day consecutive rain days and 7-day consecutive dry periods, 

respectively. The ratio of the SVM/PC MSE is less than 1, indicating the that SVM model 

fit the data better than the PC model. 
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Table 1:  Station ID, name, source, longitude and latitude of selected stations. 
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Table 2: The first four columns show the transition probabilities from each hidden state to 

hidden state for the four state HMM. The right-hand columns show the range of daily 

station average rainfall amount. For each state and the % of total rainfall that occurs 

during each state during the historical period 1950-1999.  

 

to state 

  1 2 3 4 

Rainfall 

Amount 

(mm/day) 

% of 

Total 

Rainfall 

1 0.79 0.1 0.08 0.03 0-3 0% 

2 0.49 0.24 0.17 0.1 0-6 5% 

3 0.24 0.28 0.26 0.22 1-13 22% 

fr
o
m

 s
ta

te
 

4 0.05 0.21 0.27 0.47 6-50 73% 
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Table 3: Confusion Matrix for the SVM, giving the percentage of days that are classified 

correctly and incorrectly into each rainfall state for the 1950-1999 period. The observed 

states from the Viterbi sequence are in the columns and the predicted states from the 

SVM are in the rows. Correct classifications for each state can be seen along the 

diagonal.  The far right column shows the number of days predicted for each state while 

the bottom rows shows the number of observed days for each state. 

 

1 2 3 4 Total

1 84% 52% 34% 15% 5710

2 11% 31% 21% 12% 1387

3 4% 10% 24% 15% 805

4 1% 7% 21% 58% 1016

Total 5195 1441 1240 1042 8918

Observed

P
re

d
ic

te
d
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Table 4: Comparison of Correlations and Mean Square Error (MSE) between SVM and 

PCA model with real data for specific rainfall statistics over the validation period 1980-

2000. Wet and Dry Spell Counts are the annual number of 3-day consecutive rain days 

and 7-day consecutive dry periods, respectively. The ratio of the SVM/PC MSE is less 

than 1, indicating the that SVM model fit the data better than the PC model. 

 

Correlation 
Mean Squared Error 

(MSE) 

  PCA SVM PCA 
SVM/PCA 

ratio 

Amounts 0.62 0.81 226.53 0.65 

Wet Spell Count 0.65 0.88 5.38 0.86 

Dry Spell Count 0.57 0.85 4.01 0.36 

Number Wet Days 0.58 0.86 19.17 0.58 

Number Dry Days 0.58 0.86 19.17 0.58 

Wet-to-Wet Probability 0.64 0.88 0.09 0.80 

Dry-to-Dry Probability 0.53 0.83 0.12 0.44 
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Figure 1: Map of 13 selected stations. Map generated using the KNMI Climate Explorer 

website. 

.   
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Figure 2: Boxplot of average monthly rainfall for all stations 1950-1999 
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Figure 3:  The 25 grid points from which geopotential height, u-wind, and v-wind are 

taken for climate predictors. 
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Figure 4:  Flow Chart for model methodology. 
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Figure  5:  Graphical Model Representation of a Hidden Markov Model (Robertson et al., 

2004).
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Figure  6:  Graphical Model Representation of a Non-Homogeneous HMM (Robertson et 

al., 2004). 
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Figure 7: Conceptual representation of the kernel transformation to a higher dimensional 

feature space.  A non-separable one-dimensional data set (left) multiplied by itself and 

transformed to a 2-dimensional space, where it is separable (right). Adapted from (Noble, 

2006)
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Figure 8: Estimated HMM state sequence of the historical rainfall data set from 1950-

1999. State 1 is represented with white bars, state 2 with light grey bars, state 3 with dark 

grey bars and state 4 with black bars.  
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Figure 9: Geopotential Height anomaly composites for the four HMM states at 1000mb. 

For each day in the composite, anomalies are calculated as difference from the long term 

monthly mean. 
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Figure 10: Total wind composites for the four difference states at 1000mb 
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Figure 11 (a-c):  Results from 50 NHMM simulations over the period withheld from 

model fitting.  PCA generated climate predictors: Precipitation amounts, number of 7-day 

dry spells, and number of dry days per season averaged across all 13 stations. Solid lines 

are observed data and dotted lines are simulation averages. 50% and 95% confidence 

limits are shown.   
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Figure 11 cont (d-f):  Results from 50 NHMM simulations over the period withheld from 

model fitting. SVM generated climate predictors: Precipitation amounts, number of 7-day 

dry spells, and number of dry days per season averaged across all 13 stations. Solid lines 

are observed data and dotted lines are simulation averages. 50% and 95% confidence 

limits are shown.  SVM results are better than PC results. 
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Figure 12:  Interannual variability of SVM/NHMM-simulated rainfall amount for 

selected stations (northern stations in the top row, central stations in the middle row and 

southern stations in the bottom row). The average of the 50 simulations is plotted for each 

year (dashed) together with the observed (solid). The precipitation (in mm) per season is 

plotted on the ordinate. The results are only shown for years that were withheld from 

model fitting. 
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 Figure 13:  Number of 7-day dry spells per season of SVM/NHMM-simulated rainfall 

amount for selected stations. (northern stations in the top row, central stations in the 

middle row and southern stations in the bottom row)The average of the 50 simulations is 

plotted for each year (dashed) together with the observed (solid). The number of dry 

spells (in days) per season is plotted on the ordinate. 
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